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An isotropic elastic plane is considered which contains different elliptic inclusions remote from one another and which exhibit 
the properties of non-linear creep. The corresponding constitutive equations contain a damage parameter which varies from 
zero (in the undeformed state) to unity (at the instant of fracture). Loads which are constant in time act at infinity which cause 
the relaxation of stresses in the inclusions. The conditions are obtained under which: (a) fracture of inclusions occurs, and 
(b) fracture is impossible. The results are generalized to the case of a finite domain with a non-linear inclusion of arbitrary form 
which is under relaxation conditions in a homogeneous stress-strain state. © 2005 Elsevier Ltd. All rights reserved. 

An isotropic elastic plane containing an elliptic physically non-linear inclusion (EPNI) and subjected 
to the action of finite stresses at infinity has been considered previously [1-3]. Relations between the 
stress-strain states in the inclusion and at infinity were established. In this paper, using these relations, 
we consider EPNIs which are separated from one another by sufficiently large distances, exhibit non- 
linear viscous properties (creep) and are damaged during the creep process. In the case of external 
loads on EPNIs which are constant in time, a relaxation process occurs which is characterized by a fall 
in the stress level. The question arises of the possibility of fracture (that is, the accumulation of the 
limit value of the damage parameter) of the inclusions under these conditions. An answer to this is 
given below. 

1. FORMULATION OF THE PROBLEM 

We consider an isotropic elastic plane with different elliptic, physically non-linear inclusions (EPNI) 
which are under conditions of plane strain or a generalized plane stressed state as a consequence of 
constant external loads acting at infinity. We assume that the distance between the centres of any two 
arbitrary EPNIs is large compared to their dimensions so that the mutual effect of each inclusion on 
the stress-strain state of any other inclusion can be neglected. We therefore choose some arbitrarily 
selected EPNI, which we denote by S*, and introduce a system of coordinates Oxax2 such that the 
equation of the boundary L* which separates S* from the elastic medium S has the form 

2 - 2  2 - 2  
x]a  + xzb  = 1, a > b 

The principal values of the stresses acting at infinity are denoted by Nt and N2 and the angle between 
the first principal axis and the Oxl axis is denoted by a. 

Hooke's law [1-3] 

0 
8gEkl = (K:--l)a,n~Skt+4~0t, akt = Ckl--ann~ktl2, k,l = 1,2 (1.1) 
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holds in the domain  S, where  13° t and ~kt are components  of  the stress deviator  and the unit tensor,  g 
is the shear  modulus,  ~ = 3 - 4v in the case of  plane deformat ion  and ~ = (3 - v)/(1 + v) in the case 
of  a generalized stressed state, v is Poisson's ratio and summat ion from 1 to 2 is carr ied out  with respect  
to repea ted  subscripts. ,c 

The  overall strains in the inclusion S* consist of  elastic strains and creep strains eia, the velocities of  
which depend on the stresses ~-a and the damage pa ramete r  so that the constitutive equat ions have 
the form [4, 5] 

£ .  , , , c  . , c  B I s , ( 1  - z  , = - tO)  Os,/O13kt, k, l  = 1, 2 (1.2) = aklmnOmn + £kl ' £kl 

where a~mn are the components  of  the elastic compliances of  the inclusion, s .  = s.(13~) is a homogeneous  
positive convex funct ion of  the first degree,  co (0 ___ co < 1) is the damage pa ramete r  (in the natural  state 
co = 0 and, at the instant of  fracture,  o~ = 1) and B1, B2, m, n a n d p  are positive constants. 

The  deformat ions  of  the elastic medium and the inclusion are assumed to be small, and the field of  
the loads and the displacement field on the boundary L* are neglected. The  stresses at infinity are applied 
at the instant of  t ime t = 0 and remain constant.  When  t < 0, the domains S and S* are in a natural  
undefo rmed  state and, therefore ,  

,c I colt=0 = 0, ekl t--0 = 0, k , l =  1,2 (1.3) 

The  relations between the stress-strain state in S* and at infinity (subject to the condit ion that  the 
magni tude of  the rotat ion e = = 0), in the system of  coordinates  Oxlx2 connec ted  with the axes of  
symmetry of  the EPNI,  have the form [13] 

g(moC + D) = ~:(moA + B) - (~: + 1)(moF + F') (1.4) 

g(~" + moD ) = - (A  + moB)  + (1¢ + 1 )F  

* 2B * * 2 i~*  2, C e* l + e *  2 + 2 i e *  2A = 0 "  I + 022, = 1322-011 + = 

D = e F t - e ~ 2 + 2 i £ ~ 2 ,  m o = ( a - b ) / ( a + b )  ( 0 < m  0 < l )  

4F  = N I + N  2 = Oll +022, 2 F ' =  ( N 2 - N l ) e x p ( - 2 i ~ )  = (~22-1311 +2io~'2 

where  13~ (k, l = 1, 2) are the components  of  the stresses at infinity and £* is the magni tude  of  the 
rota t ion in S*. It was assumed in deriving relations (1.3) that  the point  (0, 0) was fixed, that  is, the 
displacements of  the centre  of  the EPNI  are equal  to zero. 

Note  that  the stress-strain state in the EPNI  will be homogeneous  [1-3]. 
Equations (1.2) and (1.4) and the initial conditions (1.3) are a closed system for finding the stress-strain 

state in the inclusion using the known history of  the stresses 13~t = 0~1 (t) at infinity, that  is, o~t = ok( t ) ,  
* * - - 2 ekl = eel( t )  and co - o~(t) (k, l - 1, ). 

Solving Eq. (1.4) for  £~1 and e*, we find that 

2 , .~ .  

2 g ( l  - m o ) £  m0(l¢ + 1)((5"2- o~* 2) 

and, for  the remaining three  equations,  we obtain [2, 3] 

F i = o~ijy j+~I i j~ j ,  i = 1 , 2 , 3  

* F3 21z~'2, Yk = O~'k, Y 3  = O1"2, Fk = £kk = 

(1~ + 1)(1 -- m0) ~ - 1 
Otl~ = 41.t(1 + m  o) ' Ix12 = a21 = - - ~ - ,  1x22 = 

~k = Okk, ~3 = O12; k = 1,2 

2 
(~ + 1)(1 + mo) 1~ + m o 

4g(1 - mo) ' 533 = 2 ~t(l -- too) 
(1.5) 

(K: + 1 )(3 - m o) ~: - 1 
[~lJ = 8 g ( 1  + m  o) ' 1312 = 132j = 8 g  ' 1~22 = 

( ~ +  1)(3 + m  0) ~:+ 1 

81tl(1-m o) ' 1333 I t ( 1 - m o  2) 

O < m o <  1 
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(all of the remaining c~ij and ~ij are equal to zero;summation with respect to j is carried out from 1 
t o  3). 

Using the notation adopted in (!.5), we write the constitutive equations (1.2) in t h e ' f o r m  

Fi = SeOSel~Yi+ fci, f~ = BlSc(ln _co)-'nOsc/Oyi, i = 1,2,3;  CO = B2scQl-o)) -m 
(1.6) 

z d c .c  ~ .~ c .~ d d i , j =  1,2,3; d = e , c  Sd=O~oYiYj, f l  = e l l ,  f2 =e22, f3 =2~12, t~ =Otji, 

The quantities c~- are expressed in terms of the components of the elastic compliances a*klmn from 
(1.2) and the form of the function s~ in the creep equation in (1.6) is an extension of the relations 
Sc = Sc(Yi) to the case of an isotropic medium for which ~ 1  = (X~2 = 1, 0~2 = 1 -- [~/2, (Z~3 ----- ~i The 
remaining a} are equal to zero and s~ is identical to the stress intensity (when ~ = 3) or to twice the 
principa ! shear stress (when [3 = 4). 

It follows from relations (1.5) and (1.6) that 

c e 
aijYj + f i  = ~ij~j' i = 1, 2, 3; aij = O~ij- O~(j (1.7) 

where the matrix [[A/j [I is a symmetric, positive-definite matrix in view of the fact that the matrices 
II II and II- ij II are of this type since, according to relations (1.5), 

2 
0~11 < 0 ,  0~11~22--0~12 = KI.t-2/4>0, ~ 3 3 < 0  

Since the loads at infinity are constant, that is, ~i = 0 (i = 1, 2, 3), then, after differentiating equalities 
(1.7) with respect to t, multiplying byyi and summing with respect to i, taking account of Eqs (1.6), we 
obtain 

s~ + B l s n + l ( 1 - c o )  -m = O, s ( Y i ) = ( A i j y t y j )  1/2 (a.8) 

It follows from equalities (1.8) that k < 0, that is, stress relaxation occurs in the EPNI. The fundamental 
question is whether it is possible in this relaxation process to accumulate the limit value co = 1, which 
corresponds to fracture of the inclusion. 

2. T H E  S U F F I C I E N T  C O N D I T I O N S  F O R  F R A C T U R E  OF AN E P N I  

It has been mentioned above that the matrix [IAij I1 from (1.7) is positive-definite, that i s, AOyiyj > 0 
whenyiy i  ~ O. We shall assume that the matrix 1[ o~ 1[ from (1.6) also possesses this property: a~YiYj > 0 
whenyiYi ~ 0 (the case of positive semi-definiteness when c~CjYiYj > 0 ifyiYi¢ 0 will be considere d separately 
in Section 4). It is well known [6] that the numbers XTnin > 0 and )~max > 0, which are the smallest and 
largest roots of the characteristic equation of a regular sheaf of quadratic forms which have the form 
]Aij - L(x~j ] = 0, will exist such that the following inequalities will hold 

a,Sc<-S<a2s c, a , =  ~min, a 2 -  ~ m a x  (2.1) 

The functions sc(yi) and s(yi) are defined in (1.6) and (1.8). 
It follows from the third condition of (1.6) that co = c0(t) is an increasing function and therefore, as 

earlier in [4, 5], we choose it as the independent variable, that is, we shall assume thatyi = Yi(co). Then, 
differentiating equalities (1.7) with respect to co and taking account of the fact that, according to (1.6) 

d = B21scP( 1 md -co) Yt 

we obtain 

t - I  n - p  
Ai jY  i + BIB 2 s c ~Sc /~y  i = 0, i = 1, 2, 3 (2.2) 

where the prime denotes differentiation with respect to co. 
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Equalities (2.2) form a system of equations for finding the functionsyi = yi(co), the initial conditions 
for which follow from relations (1.3) and (1.7) and have the form 

Yio =Yi(O) = Bik~jk{j ,  i = I, 2, 3 (2.3) 

where [IBi/II is the inverse matrix to [IAij 11. 
Multiplying equalities (2.2) b y y  i and summing with respect to i, we find 

~ - 1  n - p +  I 
Ss' + B I I J  2 S c = 0 (2.4) 

If s - aos c, a0 = const, then equality (2.4) reduces to the equation for the relaxation of the stress sc 
in a rod, which has been investigated earlier in [4]. In the general case, inequalities (2.1) hold, which 
we shall use in order to obtain the corresponding estimates. 

We will consider three cases separately. 
1. Suppose n + 1 - p  > 0. Then, as a consequence of inequalities (2.1), we shall have 

+ l - p _  n + l  
( s / a 2 )  n ~ s  c -P < ( s l a l )  n+l -p  (2.5) 

and, from relations (2.4) and (2.5), we obtain 

p - n + l  + . p - n + l  
- A l s o  < ( s  p -n  J ) ' / ( p - n +  l ) < - A 2 s  0 

n r~-I - ( n + l - P ) s ; - P - I  ' k = 1,2 
A k =  lJ l lJ  2 a k 

(2.6) 

Integrating inequalities (2.6) with respect to o) from zero to the current value, we find 

- A I s P - n + l o ~ < - f ( s ) < - A z s ~  -n+lo~, f ( S ) = - - ( S P - n + I - - s P - n + I ) / ( p - - n +  I), So=S(Yio) (2.7) 

The quantitiesyi0 (i = 1, 2, 3) are defined by formula (2.3). 
Since f ( s )  is an increasing function, it follows from inequalities (2.7), regardless of the sign of the 

c o n s t a n t p - n  + 1, that 

SoCPl (¢o) _< s __ So~P2(co) 
(2.8) 

% ( ~ ) ~ [ l - A k ( p - n + l ) o J ]  l / (p-n+j) ,  k = 1,2 

From relations (2.1) and (2.8), for Sc, we obtain 

-1 . . < <~ -1 . . 
a 2 s0cPl~O)) - s c - a I So~P2to~) (2.9) 

Then, from the last equation of (1.6) for cb, we shall have 

-1 p -1 ~ . -1 \P  
t,12[q%(¢o)] p < (1 - o))m~ < t,l[q02(O~)] , t . k  = t~2ta k So) , k = 1, 2 (2.1o) 

I fAffp  - n  + 1) < 1, then the EPNI fractures after a finite time t , .  Actually, since, as a consequence 
of inequalities (2.8), the functions [q0k(o))] -p (k = 1.2) are increasing functions, after integration of the 
first inequality we find from (2.10) 

I 1 

t ~  2 ~ I [ ( p l ( ( l ) ) ] - P ( 1 - O ~ ) r a d o ~ [ ~ ) l ( 1 ) ] - P I ( 1 - o ~ ) m d O )  ~--- [ ( P t ( 1 ) ] - P ( / ' n  "4" 1 ) - '  

0 0 

(2.11) 

I f A l ( p - n  + 1) = 1, then 

1 

~ 2 ~ I ( l - o , ) ) m - A l P d o )  

0 

(2.12) 

whence it follows that t .  < oo i fm + 1 - A l p  > O. 
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IfA2(p - n + 1) > 1, fracture will not occur since the value 

o = C O o = - a 2 1 ( P - n + l ) - l < l  

will be attained after a time to --> oo [4]. In fact, from inequalities (2.8) and (2.10) we obtain 

~0 ~0 

~ > f (1-o))m[tP2(O))]-Pdo)>_(1-COo) m 1 -  = 
t . l  0 0 

= ( l~2°)1  m lim ( l - ° ° )  -(n- ' )(p-n+'  = ' ~  

2( - )00-~%-o\ o0/  

s i n c e p - n  + 1  >A2 l > 0 a n d n - l > 0 .  
IfA2( p - n  + 1) = 1, then 

1 

t__~_. >_ i (  1 - O) )rn- a2P doJ 
t , l  

o 

and hence, when rn - A 2 p  + 1 < 0, the time prior to fracture t ,  --> oo. 
2. Suppose n + 1 - p  < 0. In this case, the signs of all of  the inequalities in formulae (2.5)-(2.8) change 
to the opposite signs and, instead of (2.9), we obtain 

azls0q)2(0)) _< s c <- a~ls0tPl(~)  (2.13) 

Hence, by repeating all the previous arguments, we can show that fracture will occur when A2( p - 
n + 1) < 1 and whenAzp = A z ( n  - 1) + 1 < m + 1, but there will be no fracture i fAl(  p - n + 1) > 1 
o r A l p = A l ( n - 1 ) +  l > r n +  1. 
3. Suppose n + 1 - p  = 0. Then, from equality (2.4), we find 

s = s0q)(c0), tp(0)) = (1-A0~0)l/2; A 0 = 2BiB21so 2 (2.14) 

and, from inequalities (2.1), we shall have 

-1 < 
a 2  S o t P (  O)) - s c <- allsotP(0)) (2.15) 

Hence it is clear that fracture will occur whenA 0 < 1 and whenA 0 = 1 > p/2 - m but is impossible 
if A0 > 1 orA0 = 1 <p/2 - m. These conclusions follow from the formulae presented above in which 
p = n +  l , n > l .  

3. L O W E R  AND U P P E R  L I M I T S  OF T H E  T I M E  P R I O R  TO F R A C T U R E  

In order to find the exact values of the quantity t ,  (that is, the times which have elapsed from the time 
when the loads ~i were applied at infinity up to the fracture of the EPNI), it is necessary to solve the 
non-linear system of equations (2.2) foryi = yi(o)) (i = 1, 2, 3) with the initial conditions (2.3) and, after 
this, to substitute the function 

c 

Sc(°)  = [°tiJYi(m)YJ(°~)]l/2 

into the last equation of (1.6), whence it follows that 

1 

t ,  = B21I[Sc(O))]-P (1 -- o ) m d o  

o 

(3.1) 

An exact solution of system (2.2) is possible in the simplest cases such as, for example, the case 
mentioned above when s = aoSc (a0 = const) and the function Sc = Sc(O~) is determined from Eq. (2.4) 

Sc = S c 0 [ 1 - B l B z l a 0 Z ( P - n + l ) s ~ o P - l o l  l/(p-"+l), Sco = so(0) (3.2) 
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However, using the inequalities presented in Section 2, it is possible to estimate the magnitude of t ,  
in all of the above cases when the sufficient conditions for fracture of the inclusion are satisfied. 
Integrating the second inequality of (2.10) and taking into account the fact that [cpk(o))] -p > 1 (k = 1, 2) 
when co > 0, we obtain a lower limit and, from inequalities (2.11)and (2.12), an upper limit in the 
following form 

t , l (m+ l) - I < t , < t , 2 [ c p l ( 1 ) ] - p ( m + l )  -1 when p - n < m i n ( 1 ,  At 1-1)  

t , l ( m + l ) - t < t , < t , 2 ( m - A l p + l )  -1 when p - n < A T l - l < l ,  m - A l p + l > O  

In the case when n + 1 - p  < 0, from inequalities (2.13) and the third equation of (1.6), we obtain 
equalities of the form (2.10) in which the functions %(o~) and cp2(co ) have to change places. Hence, we 
have the analogous estimates 

t , l (m+l) - l<t ,<t ,2[ tP2(1)] -P(m+l)  -l when l < p - n < A 2 1 - 1  

t , l ( m + l ) - I < t , < t , 2 ( m - A 2 p + l )  -~ when p - n < A 2 1 - 1 > l ,  m - A 2 P + l > O  

I fp  = n + 1, then, from relations (2.14) and (2.15) and the third equation of (1.6) for &, we obtain 
inequalities of the form (2.10) in which it is necessary to put ~pl(co) = ~pz(C0) = ~p(o~). We shall therefore 
have 

t , l (m + 1) -1 < t ,  < t,2[(P(1)]-P(m + 1) -1 when A o < ! 

t ,  i(m - p/2 + 1 )-1 < t ,  < t ,2(m - p/2 + l)-I when A 0 = 1 > p / 2 -  m 

The quantities ¢p(¢o) and A0 are defined by formulae (2.14). 

4. AN I N H O M O G E N E O U S  I N C O M P R E S S I B L E  M E D I U M  IN 
THE CASE OF P L A N E  STRAIN 

2 c We will now consider the case when the quadratic form sc = o~iYiY, from relations (1 6) is positive semi- . . J . . . • . , . 

definite, that is, o~.yiyj > 0 whenyiYi ¢ O. We will assume that the domam S u S* is lsotroplc, incompressible 
and is under con~ditions of plane strain so that ~: = 1 in relations (1.1) and Se = "cix *-1/2 and sc = "c in 
the constitutive equations (1.6) for the EPNI, where "c = [(Yl -y2)2/4 + y2]m is the principal shear stress 
and IX* is the shear modulus of the inclusion. Hence, when Yl = Y2 ¢ 0 and Y3 = 0, we have z = 0 and 
AiyiYj > 0, which follows from equalities (1.5) and (1.7). Consequently, the second equality of (2.1) 
cannot hold when a2 < oo. However, it is possible in this case also to obtain limits which are analogou~ 
to those presented in Sections 2 and 3. i 

For this purpose, we express F' and F from relations (1.4) when ~ = 1 as 

2 - -  

2F' = ( 1 - m2o)B - Ix( 1 + mo)D - 2ixmoC.', 2F = mo(B + IXD) + A + IXC" (4.1) 

Taking account of the fact thatA and F are positive quantities and that C = 2ie* (since e~'l + e~2 = 0) 
is pure imaginary, we find from the second equality of (4.1) 

2ixe* = mo(O~-2ixe~)  (4.2) 

It can be seen from equalities (4.1) and (4.2) that F" is independent of A. Substituting expression 
(4.2) into the first equality of (4.1) and using relations (1.5) and (1.6), after separating the real and 
imaginary parts we obtain 

~2- ~l = M~(Y2-Y,)/2 + 2M2f 2, 2~3 = M-ly 3 + M2fC3 
2 + = + 2 

m~ = (I T-mo)+(l +m2o)B/ix *, m~ Ix(l_mo) 
(4.3) 

where we have taken into account the fact thatf~ + f~ = 0. 
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Since {k = const (k = 1, 2, 3), then, differentiating equalities (4.3) with respect to co, we obtain a 
system of the form of (2.2) in the two quantities: Y2 -Yl andy3 as functions of co 

M+l(y '2-  y'l)/2 + 2M2BIB2t"cn-PO"r, /Oy2 = O, M-ly '  3 + M2BiB21" tn-P~) ' t /~y3  = 0 (4.4) 

the initial data for which, that is, the values of Y20 -Ym and Y30, follow from equalities (4.3) whenf~ = 
= 0 .  

Multiplying the first equation of (4.4) by (Y2 - y l ) / M ~  and the second equation byy3/M~ and adding 
them, we shall have the analogue of Eq. (2.4) 

TT' + BiB21"C n-p+ l = 0 (4.5) 

T 2 2 { Y 2 - Y I ' ~  2 2 2 2 5 1 2 1 1 
=-ait----.-~.- ) +a2Y 3, ai = ~.+--g,, a2 = ~ + ~  (a i -a2)< 

2 
l - m  0 ( 0 < 5 < 1 )  

5 =  2 
1 + m  0 

Both of the quadratic forms 't2 and T 2 iny2 -Yl andy3 are positive definite and an inequality of the 
form (2.1) 

aix  <_ T <_a2"c 

holds. Hence, all the arguments presented in Sections 2 and 3 still hold, where it is necessary to replace 
s by T and sc by "c, while the quantities indicated above are taken as a 1 and a 2. 

Note that, if ~2 = ~1 = const (or ~3 = 0), which, as can be seen from equalities (1.4), corresponds to 
the value c~ = rt/4 (or ~ = 0 and c~ = rU2), then, in view of relations (4.3),Y20 = Yl0 (ory30 = 0) and, as 
a consequence of system (4.4), it can easily be seen that the equalities Y2 = Yl (or Y3 = 0) will be satisfied 
at any instant of time t > 0 and system (4.4) will degenerate into a single equation iny3 (ory2 -y~). 
The solution of this equation has the form (3.2) since s = aosc, where s c = "c, 't = lY3[, a0 = a2 (or 
x --- [Y2 -Yl [/2, a0 = an), and al and a2 are defined by formulae (4.5). It has already been mentioned 
that this solution is analogous to that obtained previously in [4] for the case of a uniaxial stressed state 
and enables one, using expressions (3.1) and (3.2), to give a precise answer to the question concerning 
the possibility of the fracture of an EPNI and to find the time t,.  For example, if 

n n - I  - 2 _ n - p - I  
A 3 ( p - n +  1)< 1, A3=tJlt~2 ao "r.o (4.6) 

then t ,  < 0o [4]. In particular, condition (4.6) will be satisfied when p - n + 1 _< 0 regardless of the 
magnitude of A3. 

It is interesting to note the following. We assume that, at the instant of time t = 0, the (homogeneous) 
elastic strains Fio are in instantaneous communication with the inclusion S*. When t > 0, these elastic 
strains remain fixed, that is, t~'i = 0 and, by virtue of Eqs (1.6), a relaxation process will also occur, which 
is described by a system of equations obtained from (1.6) by differentiation with respect to t (or with 
respect to m), taking account of the fact that Fi = 0 (or F[ = 0) (i = 1, 2, 3). (These conditions can be 
achieved by choosing the stresses ~i at infinity which, in the case of knownyi, are found from relations 
(1.5) when F i = F/0 (i = 1, 2, 3).) In the case of an isotropic, incompressible medium under plane strain, 
which is being considered here, we obtain Eq. (2.4) in which sc = "t, s = xM/-~- (it is obtained from 
Eq. (4.5) when g ~ ~) .  It then follows from relations (3.2) that the time t ,  will be finite or infinite 
depending on the sign of the quantity 1 - A4( p - rt + 1), where A 4 = H c H e  1, Hc = B1B21x~ -P, 
He(f2, f3) - 2(f~ 2 + f~2)1/2 is the principal elastic shear at the instant of fracture under conditions of 
creep when "t = 'to = const, and He = "to/g* is the principal elastic shear when x = %. For real media 
A 4 > 1, and fracture is therefore only possible for brittle media for which n > p since t .  < 0o when 
A4(p  - n + 1) < 1, that is, p - n < A41 < 0 [4]. When ~3 = 0 or ~2 - ~1 = 0 in the problem being considered 
here, condition (4.6) for the finiteness of the time t, ,  that is, 

g * - l a o 2 A 4 (  p - n + 1 ) < 1 (a 0 = a I or a 0 = a2) 

can also be satisfied for elastic materials for which n < p and A4 > 1 [4]. In fact, the inequalities 
0 < p - n < g*a2A41 - 1 can hold, if g*a~A-41 > 1, that is, (after substituting the values of a I and a2 
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according to formulae (4.5) instead of a0) when 8g*g -1 > A4 - 1 and 8-1g*g -1 > 1 4  - 1 respectively. 
This is possible if the geometrical parameter of the EPNI and the moduli of elasticity of the medium 
and the inclusion satisfy the cond i t i ons :  ~ g , g - 1  >> 1 or 8-1g*g -t ~> 1. For example, the second inequality 
can be satisfied for any finite ratio g.g-1 owing to the choice of the small parameter fi (m0 ~ 1) when 
8 --9 0, that is, the elliptic inclusion degenerates into a slit filled with a non-linear medium [2]. 

5. C O N C L U D I N G  R E M A R K S  

The problems considered above concerning the possibility (or impossibility) of the fracture of an elliptic 
physically non-linear inclusion (EPNI), which is under conditions of stress relaxation, in an elastic plane 
under the action of constant loads (that is, under constant strains) at infinity, can be extended to the 
case of an inclusion S* of arbitrary shape in a finite elastic (or viscoelastic) domain S with an external 
boundary L. In fact, we assume that, when t = 0, a homogeneous stress-strain state is created in the 
domain S* with constitutive equations of the form (1..6) due to the external loadspk0 acting on L. When 
t > 0, the strains in S* must remain fixed, that is, F i = 0 (i = 1, 2, 3), which causes stress relaxation 
process in the region S*. This can also be achieved by choosing the external forces Pk = pk(t) on L, 
if the exact solution of system (1.6) is known when Fi = Fio. The problem of finding the functions 
Pk = pk(t) in L in the case of a known homogeneous stress-strain state in S*, that is, the specified functions 
F / =  F/(t) andyi = yi(t) (i = 1, 2, 3), has been considered previously [1, 5]. 

The above-mentioned exact solution can be obtained, for example, in the case of an inhomogeneous, 
incompressible medium under plane strain considered in Section 4. Actually, from equalities (2.4) when 
Sc = z and s = z/~/g*, we find a function "c = "fie0) of the form of (3.2), w h e r e  ao  2 = g*.  Then, from the 
system, which follows from (1.6) after differentiation with respect to c0, and the equalities F[ = 0 
(i = 2, 3), we determiney2 -Yl andy3 as functions of co: 

T, = "Co~(O) ), Y 2 - Y l  = (Y20-Ylo)~b((O), Y3 = Y30~(01) 

~(01)  --= [1 - BiB-21g*(p - n  + 1)'Co - p -  tc.O]J/(P-n+ 1) 
(5.1) 

From the last equation of (1.6), we obtain 

o~ 

t((O) = B21"goPI[cI>(~)]-P(1 - O~)~dco 

0 

(5.2) 

The inverse function co = ¢0(t) can be found (numerically, for example) from relation (5.2), and, on 
substituting this into the second and third equations of (5.1), we gety2 -YI andy3 as functions of t. 

Note that the quantityA = (Yl + y2)/2 has no effect on the initial stress-strain state in the domain 
S* and the subsequent relaxation process. It can therefore be chosen arbitrarily. 
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