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An isotropic elastic plane is considered which contains different elliptic inclusions remote from one another and which exhibit
the properties of non-linear creep. The corresponding constitutive equations contain a damage parameter which varies from
zero (in the undeformed state) to unity (at the instant of fracture). Loads which are constant in time act at infinity which cause
the relaxation of stresses in the inclusions. The conditions are obtained under which: (a) fracture of inclusions occurs, and
(b) fracture is impossible. The results are generalized to the case of a finite domain with a non-linear inclusion of arbitrary form
which is under relaxation conditions in a homogeneous stress—strain state. © 2005 Elsevier Litd. All rights reserved.

An isotropic elastic plane containing an elliptic physically non-linear inclusion (EPNI) and subjected
to the action of finite stresses at infinity has been considered previously [1-3]. Relations between the
stress—strain states in the inclusion and at infinity were established. In this paper, using these relations,
we consider EPNIs which are separated from one another by sufficiently large distances, exhibit non-
linear viscous properties (creep) and are damaged during the creep process. In the case of external
loads on EPNIs which are constant in time, a relaxation process occurs which is characterized by a fall
in the stress level. The question arises of the possibility of fracture (that is, the accumulation of the
limit value of the damage parameter) of the inclusions under these conditions. An answer to this is
given below.

1. FORMULATION OF THE PROBLEM

We consider an isotropic elastic plane with different elliptic, physically non-linear inclusions (EPNI)
which are under conditions of plane strain or a generalized plane stressed state as a consequence of
constant external loads acting at infinity. We assume that the. distance between the centres of any two
arbitrary EPNIs is large compared to their dimensions so that the mutual effect of each inclusion on
the stress-strain state of any other inclusion can be neglected. We therefore choose some arbitrarily
selected EPNI, which we denote by §*, and introduce a system of coordinates Oxyx, such that the
equation of the boundary L* which separates §* from the elastic medium S has the form

2 2 2,-2
xja “+xb" =1, azb

The principal values of the stresses acting at infinity are denoted by Ny and N, and the angle between
the first principal axis and the Ox; axis is denoted by o.
Hooke’s law [1-3]

8u8k] = (K— l)Gnn8k1+4021, 021 = Gk,—Gnn8k1/2, k,l = 1,2 (1.1)
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holds in the domain S, where 6§ and 8 are components of the stress deviator and the unit tensor,
is the shear modulus, k¥ = 3 - 4v in the case of plane deformation and x = (3 -~ v)/(1 + v) in the case
of a generalized stressed state, v is Poisson’s ratio and summmation from 1 to 2 is carried out with respect
to repeated subscrlpts

The overall strains in the 1nclu51on S* consist of elastic strains and creep strains £}, the velocities of
which depend on the stresses o; and the damage parameter so that the constitutive equations have
the form [4, 5]

ef = af,0f +ef, & = Bsi(1-0)"3s4/06], ki1=1,2 (1.2)

where a};,, are the components of the elastic compliances of the inclusion, s« = 5«(0%)) is a homogeneous
positive convex function of the first degree, (0 < o < 1) is the damage parameter (in the natural state
® = 0 and, at the instant of fracture, ® = 1) and By, By, m, n and p are positive constants.

The deformations of the elastic medium and the inclusion are assumed to be small, and the field of
the loads and the displacement field on the boundary L* are neglected. The stresses at infinity are applied
at the instant of time ¢ = 0 and remain constant. When ¢ < 0, the domains § and S* are in a natural
undeformed state and, therefore,

0=0, ki=12 | (13)

0, =0,

The relations between the stress—strain state in $* and at infinity (subject to the condition that the
magnitude of the rotation €” = 0), in the system of coordinates Oxyx, connected with the axes of
symmetry of the EPNI, have the form [13]

u(myC + D) = x(myA + B) — (x + 1)(meI" +17)

1.4
WC+myD) = —(A+myB)+ (x+ I (14

2A = o}, +0%, 2B = ok -of +2ic};,, C =ef +e5+2ie*
D = ef —eX +2ief,, my = (a-b)l(a+b) (0<my<1)

4T = N, +N, = 6}, +05, 2I' = (N,~N)exp(=2ia) = 03~ 0}, +2i0},

where oy (k, | = 1, 2) are the components of the stresses at infinity and €* is the magnitude of the
rotation in S*. It was assumed in deriving relations (1.3) that the point (0, 0) was fixed, that is, the
displacements of the centre of the EPNI are equal to zero.

Note that the stress—strain state in the EPNI will be homogeneous [1-3].

Equations (1. 2) and (1.4) and the initial conditions (1.3) are a closed system for finding the stress—stram
state in the inclusion using the known history of the stresses 6y; = oy (?) at infinity, that is, 6% = 6% (f),
ey =¢y@)and ® = w(t) (k1= 1 2).

Solving Eq. (1.4) for &}, and €*, we find that

2u(1 —mp)e* = my(K+1)(05-Op)
and, for the remaining three equations, we obtain [2, 3]

F; = a,-iyj+B,.j§j, i=1273

* * ok - ok e - -
Fo=¢f Fy=26%5 »n=05 y3=0h & =04 &=0y k=12

L+ D-mg) o1 (k¥ Dd+mg) o x+mp

= Ty M= = = T ey ST s (A9
_(x+1)(3-my) B,=p 1 B _(x+1)(3+my) __Kk+1

ﬁll_ 8“,(1+m0) ’ 0= u 22 = Su(l_mo) 4 33 p(l—m(z))

0<my<1
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(all of the remaining a;; and B are equal to zero; summation with respect to j is carried out from 1

to.3).
Using the notation adopted in (1.5), we write the constitutive equations (1.2) in the form

F, = 5,9s,00y;+ fi, fi = B;si(1-0)"0s/dy,, i=1,23; @= stf(l —0)™"
d c %< d d . . (16)
a;yy;, fi=¢en. f2-£22’ f3—2812’ =0y Lji=1,23; d=ec:

The quantities of are expressed in terms of the components of the elastic compliances a%j,,, from
(1.2) and the form of the function s, in the creep equation in (1 6) is an extension of the relations
5, = sc(y,) to the case of an isotropic medium for which ofj; = 05, = 1, 0, = 1 - p/2, 053 = B. The
remaining of; are equal to zero and s, is identical to the stress intensity (when B = 3) or to twice the
principal shear stress (when §§ = 4).

It follows from relations (1.5) and (1.6) that

Agyi+fi = Bk i= 1,23 A= of-q (1.7)

where the matrix ||4;]| is a symmetric, positive-definite matrix in view of the fact that the matrices
||l and || - || are of this type since, according to relations (1.5),

o, <0, a”azz—an: KR 214> 0, 03, <0

Since the Joads at infinity are constant, that is, & = 0 (i = 1, 2, 3), then, after differentiating equalities
(1.7) with respect to ¢, multiplying by y; and summing with respect to i, taking account of Eqgs (1.6), we
obtain

) - 12
ss+Bls:.'+1(]r—0)) " =0, sy =(A;yy;)

(1.8)

It follows from equalities (1.8) thats < 0, that is, stress relaxation occurs in the EPNI. The fundamental
question is whether it is possible in this relaxation process to accumulate the limit value @ = 1, which
corresponds to fracture of the inclusion.

2., THE SUFFICIENT CONDITIONS FOR FRACTURE OF AN EPNI

It has been mentioned above that the matrix ||AU || from (1.7) is posltlve -definite, that is, A,}ylyj >0
when y;y; # 0. We shall assume that the matrix || of|| from (1.6) also possesses this property: ogyiy; > 0
when yiy; # 0 (the case of positive semi-definiteness when ofy;y; > 0 if y;y; # 0 will be considered separately
in Section 4). It is well known [6] that the numbers A.;, > 0 and Amax > 0, which are the smallest and
largest roots of the characteristic equation of a regular sheaf of quadratic forms which have the form
|4; — Ao| = 0, will exist such that the following inequalities will hold

alscsssaZ‘gc’ alErJ;"min’ GZE'\/A'max. (21)

The functions s.(y;) and s(y;) are defined in (1.6) and (1.8).

It follows from the third condition of (1.6) that ® = «(¢) is an increasing funiction and therefore, as
earlier in [4, 5], we choose it as the independent variable, that is, we shall assume thaty; = y,(w). Then,
differentiating equalities (1.7) with respect to ® and takmg account of the fact that, according to (1. 6)

da -p md
s 32 s (1 0))
we obtain
A;y;+ B, B,'s" POs,/dy, = 0, i=123 (2.2)

where the prime denotes differentiation with respect to o.
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Equalities (2.2) form a system of equations for finding the functions y; = y;(w), the initial conditions
for which follow from relations (1.3) and (1.7) and have the form

Yio=y{0) = ByB,L; i=123 (2.3)

where || B;|| is the inverse matrix to [|4;]].
Multlplymg equalities (2.2) by y; and summing with respect to i, we find

ss+BB,s. "t =0 (2.4)

If s = ays,, ay = const, then equality (2.4) reduces to the equation for the relaxation of the stress s,
in a rod, which has been investigated earlier in [4]. In the general case, inequalities (2.1) hold, which
we shall use in order to obtain the corresponding estimates.

We will consider three cases separately.

1. Suppose n + 1 —p > 0. Then, as a consequence of inequalities (2.1), we shall have

(s/az)“l_pSsZH_pS(s/a,)"H_p (2.5)

and, from relations (2.4) and (2.5), we obtain
—ASET (P Y H(p—n 4 1) S-ApsE !

. . (2.6)

Ac=B B " s k= 1,2

Integrating inequalities (2.6) with respect to o from zero to the current value, we find
—As) " oS f© S -Apsh T o, f@=6" " =T M -n 1), sy=s00) (27
The quantities y,q (i = 1, 2, 3) are defined by formula (2.3).
Since f(s) is an increasing function, it follows from inequalities (2.7), regardiess of the sign of the

constant p —n + 1, that

509 (0) £5 < 550,(®)

2.8
@) =[1-Ap-n+Do] """ k=12 @8

From relations (2.1) and (2.8), for s., we obtain
a;lso(pl(m)SscéaI]sotpz(w) (2.9)

Then, from the last equation of (1.6) for &, we shall have
Gl (@1 < (1-0)" 0 £ [0,(@)),  fy=Byay's)), k = 1,2 (2.10)
IfA,(p—n + 1) < 1, then the EPNI fractures after a finite time .. Actually, since, as a consequence

of inequalities (2.8), the functions [¢;(®)]? (k = 1.2) are increasing functions, after integration of the
first inequality we find from (2.10)

1
'* <j[<p (@)]"(1 - w) dw<[q>1(1)]"’j(1 ®)"do = [@, ()] (m+ 1) (2.11)
IfA(p-n+1)=1,then

1
Le < [(1-w)" M do (2.12)
Ly

whence it follows that 1y < e ifm + 1-Ap > 0.
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If Ay(p —n + 1) > 1, fracture will not occur since the value
o= w,=A; (p-n+ <1
will be attained after a time #y — o [4]. In fact, from inequalities (2.8) and (2.10) we obtain

~-pl(p-n+1)
1—-‘-"—) d

Iy ; m -p m . =
— 1-w [0 do>(1 - ®
; , > '0‘.( ) [(Pz( )] —( o) {( mO -

_(l-oy)" ( (,))—(n-n)(p—nﬂ)_

= 1 -— = oo
Az(n—l)m—-)mo—o (07
sincep-n+1>A4'>0andn-12>0.
IfAy(p—-n+ 1) =1, then
1
i*—zj(l )" P do
T

and hence, when m — A,p + 1 <0, the time prior to fracture tx — eo.
2. Suppose n + 1 ~p < 0. In this case, the signs of all of the inequalities in formulae (2.5)—(2.8) change
to the opposite signs and, instead of (2.9), we obtain

a5 500y(®) <5, < a7 560,(©) (2.13)

Hence, by repeating all the previous arguments, we can show that fracture will occur when 4,(p —
n+ 1) <1landwhenAd,p = Ay(n—1) + 1 <m + 1, but there will be no fracture if 4,(p-r + 1) > 1
orAip=A(n-D+12m+ 1.

3. Suppose n + 1 —p = 0. Then, from equality (2.4), we find

s = 5o0(0), @) = (1-4,0)" A, = 2B,B;'sy’ (2.14)
and, from inequalities (2.1), we shall have
a;lsocp(o)) <s,< a;lsocp(o)) (2.15)

Hence it is clear that fracture will occur when Ay < 1 and when Ag = 1 > p/2 — m but is impossible
ifAg > 1 or Ay = 1< p/2 — m. These conclusions follow from the formulae presented above in which
p=n+1ln21

3. LOWER AND UPPER LIMITS OF THE TIME PRIOR TO FRACTURE

In order to find the exact values of the quantity ¢. (that is, the times which have elapsed from the time
when the loads & were applied at infinity up to the fracture of the EPNI), it is necessary to solve the
non-linear system of equations (2.2) for y; = y(o) (i = 1, 2, 3) with the initial conditions (2.3) and, after
this, to substitute the function

5.(0) = [y @)y @]

into the last equation of (1.6), whence it follows that

1
ty = By j [s.(0)]?(1 - ®)"dew (3.1)
0

An exact solution of system (2.2) is possible in the simplest cases such as, for example, the case
mentioned above when s = ags, (a9 = const) and the function s, = s.(®) is determined from Eq. (2.4)

n—p—lm]”(P—’H'l)

§. = SCO[l ~BIB;la62(p—n+ I)SCO » S0 = sc(()) (32)
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However, using the inequalities presented in Section 2, it is possible to estimate the magnitude of ¢
in all of the above cases when the sufficient conditions for fracture of the inclusion are satisfied.
Integrating the second inequality of (2.10) and taking into account the fact that [g(w)]? > 1 (k = 1, 2)
when ® > 0, we obtain a lower limit and, from inequalities (2.11) and (2.12), an upper limit in the
following form

ta(m+ 1) <ty <t,,[0,(D]P(m+1)" when p-n<min(l,A] - 1)

tam+ 1) <ty <ty(m-Ap+1)" when p-n<A'-1<1, m-Ap+1>0

In the case whenn + 1 -p < 0, from inequalities (2.13) and the third equation of (1.6), we obtain
equalities of the form (2.10) in which the functions @;(®) and @,(w) have to change places. Hence, we
have the analogous estimates

Lyi(m+ 1)”l <t*<t*2[(p2(1)]"’(m+ 1)'l when 1 <p—n<A;l—1

t*,(m+1)_l<t*<t*2(m-—A2p+l)—l when p—n<A;'—1>1, m-A,p+1>0

If p = n + 1, then, from relations (2.14) and (2.15) and the third equation of (1.6) for ®, we obtain
inequalities of the form (2.10) in which it is necessary to put ¢;(®) = ¢,(®) = ¢(®). We shall therefore
have

tam+ 1) <ty <t eI P(m+1)" when Ag<1
toim=pl2+ 1) <t <t,y(m-pl2+1)" when Ay = 1>pl2-m

The q'uantitiés ¢(w) and A are defined by formulae (2.14).

4. AN INHOMOGENEOUS INCOMPRESSIBLE MEDIUM IN
THE CASE OF PLANE STRAIN

We will now consider the case when the quadratic form s? = o7y;y; from relations (1.6) is positive semi-
definite, that is, ofy;y; > 0 when y;y; # 0. We will assume that the domain S U §* is isotropic, incompressible
and is under conditions of plane strain so that k¥ = 1 in relations (1.1) and s, = tu*"? and s, = T in
the constitutive equations (1.6) for the EPNI, where 1= [(y; —y,)%/4 + y3]¥2is the principal shear stress
and p* is the shear modulus of the inclusion. Hence, when y; = y, # 0 and y; = 0, we have 1 = 0 and
Ayiy; > 0, which follows from equalities (1.5) and (1.7). Consequently, the second equality of (2.1)
cannot hold when a, < <. However, it is possible in this case also to obtain limits which are analogouy
to those presented in Sections 2 and 3. i
For this purpose, we express I'” and I from relations (1.4) when k = 1 as «

2T = (1-m2)B-p(l + my)D-2umyC, 2T = my(B+uD)+A+puC (4.1)

Taking account of the fact that 4 and I are positive quantities and that C = 2ie* (since 1} + €5, = 0)
is pure imaginary, we find from the second equality of (4.1)

2ue* = my(G1; - 2pe) (4.2)

It can be seen from equalities (4.1) and (4.2) that I is independent of A. Substituting expression
(4.2) into the first equality of (4.1) and using relations (1.5) and (1.6), after separating the real and
imaginary parts we obtain

& -& = M- y)2+2M3f5, 283 = Miys+ Myf5

(4.3)
M; = (1Fmp) + (1 £mp)p/p*, M5 = p(l £mg)

where we have taken into account the fact that f§ + f5 = 0.
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Since &, = const (k = 1, 2, 3), then, differentiating equalities (4.3) with respect to @, we obtain a
system of the form of (2.2) in the two quantities: y, ~ y; and y; as functions of ® : ‘
My~ y)/2+2M3B,B;' " P91/dy, = 0, My, +M;B\B;'U" Patidy, = 0 (4.4)

the initial data for which, that is, the values of y,; —y1o and y3, follow from equalities (4.3) when f§ =

f5=0.
Multiplying the first equation of (4.4) by (y, —y1)/M} and the second equation by yy/M; and adding
them, we shall have the analogue of Eq. (2.4)

TT +B,B;'t" "' = 0 (4.5)

L
ud

2
- 1
Tzsaf(yzzyl) +a§y§, a? = S+-— a%

1
u*s ‘—l_* (alsaZ)

2
{ -
§ = mg (0<8<1)
1 +my

Both of the quadratic forms t* and 7% in y, - y, and y; are positive definite and an inequality of the
form (2.1) ‘ : :

a,1<T<a,t

holds. Hence, all the arguments presented in Sections 2 and 3 still hold, where it is necessary to replace
s by T and s, by 1, while the quantities indicated above are taken as a; and a,.

Note that, if &, = &; = const (or &; = 0), which, as can be seen from equalities (1.4), corresponds to
the value o = n/4 (or oo = 0 and o = m/2), then, in view of relations (4.3), ¥, = y19 (01 y3 = 0) and, as
a consequence of system (4.4), it can easily be seen that the equalities y, = y; (ory; = 0) will be satisfied
at any instant of time ¢ > () and system (4.4) will degenerate into a single equation in y; (or y, — ;).
The solution of this equation has the form (3.2) since s = ags., where s, = T, T = |y3|, a9 = a5 (or
T = [y, -y11/2, ay = a4), and a; and a, are defined by formulae (4.5). It has already been mentioned
that this solution is analogous to that obtained previously in [4] for the case of a uniaxial stressed state
and enables one, using expressions (3.1) and (3.2), to give a precise answer to the question concerning
the possibility of the fracture of an EPNI and to find the time .. For example, if

Ay(p-n+1)<1, A;=B,B; ayt """ (4.6)

then #: < e [4]. In particular, condition (4.6) will be satisfied when p ~n + 1 <0 regardless of the
magnitude of A,.

It is interesting to note the following. We assume that, at the instant of time ¢ = 0, the (homogeneous)
elastic strains Fj are in instantaneous communication with the inclusion §*. When ¢ > 0, these elastic
strains remain fixed, that is, F; = 0 and, by virtue of Eqs (1.6), a relaxation process will also occur, which
is described by a system of equations obtained from (1.6) by differentiation with respect to ¢ (or with
respect to o), taking account of the fact that F; = 0.(or F{ = 0) (i = 1, 2, 3). (These conditions can be
achieved by choosing the stresses ; at infinity which, in the case of known y;, are found from relations
(1.5) when F; = Fjo (i = 1,2, 3).) In the case of an isotropic, incompressible medium under plane strain,
which is being considered here, we obtain Eq. (2.4) in which s, = 1, s = 1A p* (it is obtained from
Eq. (4.5) when p — <o). It then follows from relations (3.2) that the time ¢, will be finite or infinite
depending on the sign of the quantity 1 — Ay(p - n + 1), where 4, = H.H;', H. = B;B;'t} "7,
H(fo, f3) = 2(f5* + f$HY is the principal elastic shear at the instant of fracture under conditions of
creep when T = Ty = const, and H, = 1¢/u* is the principal elastic shear when t = 1,. For real media
A4 > 1, and fracture is therefore only possible for brittle media for which n > p since ¢« < o when
Ayp-n+ 1) <1,thatis,p-n <Az <0[4]. When&; = 0 or &, -&; = 0in the problem being considered
here, condition (4.6) for the finiteness of the time ¢, that is,

¥l Ay(p-n+ 1)<l (ay=a, or ag=ay)

can also be satisfied for elastic materials for which n < p and 44 > 1 [4]. In fact, the inequalities
0 <p-n<pu*aiAy’ -1 can hold, if u*aiAy' > 1, that is, (after substituting the values of a; and a,
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according to formulae (4.5) instead of ap) when du* w' > A4,—1and 8 u*u™ > A, - 1 respectively.
This is possible if the geometrical parameter of the EPNI and the moduli of elasticity of the medium
and the inclusion satisfy the condltlons opL* ;,L Is>1ord? Tl 1> 1. For example, the second inequality
can be satisfied for any finite ratio u*u™ owing to the choice of the small parameter & (my — 1) when
8 — 0, that is, the elliptic inclusion degenerates into a slit filled with a non-linear medium [2].

5. CONCLUDING REMARKS

The problems considered above concerning the possibility (or impossibility) of the fracture of an elliptic
physically non-linear inclusion (EPNI), which is under conditions of stress relaxation, in an elastic plane
under the action of constant loads (that is, under constant strains) at infinity, can be extended to the
case of an inclusion §* of arbitrary shape in a finite elastic (or viscoelastic) domain § with an external
boundary L. In fact, we assume that, when ¢ = 0, a homogeneous stress—strain state is created in the
domain S$* with constitutive equations of the form (1.6) due to the external loads py acting on L. When
t > 0, the strains in S* must remain fixed, that is, F; = 0 (i = 1, 2, 3), which causes stress relaxation
process in the region S*. This can also be achieved by choosing the external forces p;, = py(f) on L,
if the exact solution of system (1.6) is known when F; = F;;. The problem of finding the functions
Pr = pr(f) in L in the case of a known homogeneous stress—strain state in S*, that is, the specified functions
F; = Fi(t) and y; = y,(¢) (i = 1, 2, 3), has been considered previously [1, 5].

The above-mentioned exact solution can be obtained, for example, in the case of an inhomogeneous,
incompressible medium under plane strain considered in Section 4. Actually, from equahtles (2.4) when
s. =tands = N u*, we find a function t = () of the form of (3.2), where ag® = |1*. Then, from the
system, which follows from (1.6) after differentiation with respect to o, and the equalities F = 0
(i = 2, 3), we determine y, — y; and y; as functions of :

T =T,P(®), y,-y = (¥20=Y10)P(®), ¥3 = y3pP(0)

- (5.1)
O(w)=[1-B,B; ' w*(p-n+ 1)t P el "

From the last equation of (1.6), we obtain
()]
Ho) = Bt [[®(@)]7(1 - 0)"do (5.2)
0

The inverse function ® = () can be found (numerically, for example) from relation (5.2), and, on
substituting this into the second and third equations of (5.1), we gety, —y; and y; as functions of ¢.

Note that the quantity 4 = (y; + y;)/2 has no effect on the initial stress—strain state in the domain
S* and the subsequent relaxation process. It can therefore be chosen arbitrarily.
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